Object Detection dengan PyTorch Detectron 2 dan Colab

Pada tutorial ini kita akan coba membuat object detection model dengan custom dataset kita sendiri menggunakan PyTorch Detectron 2.

Facebook Detectron 2 adalah salah satu python framework yang dapat digunakan untuk kasus object detection. Detectron dikembangkan oleh Facebook dengan menggunakan basis PyTorch sebagai deep learning frameworknya. Bagi yang belum tahu tentang PyTorch, bisa cek website resminya atau kunjungi tutorial kami sebelumnya di sini.

Framework lain untuk deteksi objek yang cukup populer adalah Tensorflow object-detection API (TFOD) yang dikembangkan oleh Google. Keduanya hampir memiliki fitur utama yang sama, salah satunya mereka menyediakan Model Zoo, di mana kita bisa mulai proses training menggunakan model yang sudah ada (pretrained model).

Detectron 2 Tutorial

Pada tutorial ini kita akan menggunakan Google Colab. Contoh code yang akan dibahas pada artikel ini tersedia di sini.

Detectron 2 Logo
  1. Dataset
  2. Instalasi
  3. Menyiapkan DatasetCatalog
  4. Training Model
  5. Save and Load Model

1. Dataset

Dataset yang akan kita gunakan sama dengan dataset dari tutorial sebelumnya. Kita akan mendeteksi pada suatu citra apakah ada kangguru atau rakun. Penjelasan detail format data dan bagaimana memprosesnya dapat dilihat pada artikel sebelumnya. Tapi, karena artikel sebelumnya digunakan untuk object detection dengan Tensorflow sedangkan kita di sini akan menggunakan PyTorch Detectron, maka kita tidak perlu memproses data sampai membuat file tfrecord, cukup sampai bagian membuat file csv.

Dataset latihan dapat didownload melalui github dengan menuliskan perintah berikut di google colab. Detail dataset dapat dibaca di file Readme:

! git clone https://github.com/rianrajagede/object-detection.git
Continue reading

Melanjutkan Training Extend FastText Model

Artikel kali ini membahas bagaimana cara melanjutkan training atau extend Fasttext model yang sudah ada, dengan menambahkan dataset baru. Pada artikel sebelumnya, Word embedding dengan Fasttext bagian 1.5, telah dibahas cara menggunakan model pre-trained Fasttext word embedding dalam Bahasa Indonesia yang disediakan oleh Facebook. Manfaat dari extend model adalah kita bisa menambahkan kosa kata baru ke dalam vocabulary model pre-trained Fasttext, tanpa perlu train ulang dari awal.

Definisi model pre-trained di sini tidak terbatas pada model pre-trained yang disediakan Facebook, tapi bisa juga berupa model word embedding Fasttext yang sudah kita train sendiri sebelumnya. Namun untuk contoh, akan digunakan model pre-trained Fasttext Bahasa Indonesia dari Facebook.

  1. Load Pre-Trained Model FastText dari Facebook
  2. Cek Model Awal
  3. Menyiapkan Dataset
  4. Extend Model
  5. Cek Model Setelah di-Extend
Continue reading

Object Detection dengan Tensorflow dan Google Colab [1]

Jadi saya baru-baru ini dapat ajakan untuk membuat sebuah aplikasi yang menggunakan metode object detection untuk mengetahui objek apa saja yang ada pada citra dan posisinya di mana melalui tangkapan kamera Handphone. Proyek ini sangat baru bagi saya dan membuat saya jadi belajar banyak dalam pengerjaan proyek ini.

object detection illustration

Membuat model object detection bukanlah suatu yang mudah, dan menjadikannya bisa dijalankan di Handphone adalah masalah yang lain lagi. Pada artikel ini saya akan coba jelaskan bagaimana membuat sebuah model object detection menggunakan custom dataset buatan sendiri yang nantinya dapat diaplikasikan ke mobile (Android/IOS). Artikel ini fokus ke tahap pertama, yakni penyiapan data.

Tensorflow API

Kami menggunakan Tensorflow untuk menyelesaikan permasalahan ini. Salah satu keunggulan Tensorflow adalah kemudahannya dalam men-deploy model ke Handphone, yakni dengan cara mengkonversi model menjadi TFLite model. Dari TFlite model, nantinya model bisa langsung dipanggil di script Android. Selain itu Tensorflow juga menyediakan beberapa API yang memudahkan kita dalam proses pembuatan model object detection dengan custom dataset (dataset buatan kita sendiri).

Kami menggunakan Tensorflow versi 1.x karena Tensorflow versi 2 saat tulisan ini dibuat masih belum support untuk object detection dengan custom dataset.

Proses instalasi Tensorflow dan Tensorflow object detection dilakukan secara terpisah. Detailnya bisa dilihat sesuai dokumentasi resminya (bisa update setiap waktu). Instalasi Tensorflow dapat dilihat di halaman utamanya, sedangkan untuk instalasi tensorflow object detection API bisa di akses di link berikut ini.

Dataset

Format dataset untuk Object Detection tentu berbeda dengan dataset yang digunakan pada klasifikasi citra biasa. Data latih untuk kasus deteksi objek memerlukan label berupa file terpisah yang mencatat nama objek dan lokasi objek tersebut pada suatu citra atau disebut file anotasi. Terdapat dua style file anotasi yang cukup populer, yakni style COCO dataset dan PASCAL-VOC. Untuk masing-masing style, format dataset bisa berupa file JSON atau file XML. Kami menggunakan format PASCAL-VOC XML dengan tampilan seperti berikut:

<annotation>
	<folder>My Drive</folder>
	<filename>Image1.jpg</filename>
	<path>C:\My Drive\Image1.jpg</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>1280</width>
		<height>720</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>Object 1</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>925</xmin>
			<ymin>343</ymin>
			<xmax>1097</xmax>
			<ymax>464</ymax>
		</bndbox>
	</object>
</annotation>

Jadi pada contoh di atas saya punya file citra “Image1.jpg” dan file XML “Image1.xml”. Isi dari file XML nya adalah data di atas. Berisikan koordinat objek yang ingin dideteksi. Pembuatan file XML ini tidak perlu dibuat manual (diketik satu persatu), kita bisa menggunakan software anotasi. Anotasi citra diatas dibuat menggunakan software labelimg.

Selain itu, karena kita nantinya akan menggunakan fungsi-fungsi bawaan tensorflow, ada banyak penyesuaian data yang perlu dilakukan sebelum masuk ke proses model training, kira-kira alur pemrosesan datanya seperti ini:

Jadi setelah punya gambar beserta anotasi XML nya, kita perlu convert dulu ke CSV. File CSV ini merupakan 1 file yang “merangkum” semua file xml yang kita punya. Dari file CSV tersebut lalu kita convert ke TFRecord file, objek yang dapat dibaca oleh tensorflow dengan mudah. Semisal ada pembagian data train, data validation, dan data test, proses pemisahan ini dilakukan sebelum konvert ke CSV, jadi ilustrasi di atas hanya untuk salah satu set, data train misalnya.

Continue reading

Review Course Online Premium AI, ML, dan Deep Learning

Tahun 2018-2020 ini alhamdulillah saya dapat kesempatan untuk merasakan tiga course online premium yang (seharusnya) berbayar dengan topik AI, machine learning, atau deep learning. Alhamdulillah saya mendapatkan kesempatan mengikuti ketiga course online ini secara gratis, melalui program beasiswa dan bantuan kampus. Saya akan coba review singkat ketiga course tersebut, semoga bisa jadi pertimbangan jika ada yang tertarik mengikutinya.

Datacamp

Datacamp Course Online

Course online pertama yang saya dapat adalah Datacamp, saya dapat premium student plan-nya berkat bantuan kerja sama Pak Widiawan, dosen UGM, sekitar pertengahan tahun 2018. Course tersebut berlangsung sekitar 4 bulan.

Di Datacamp, tersedia beberapa jalur belajar dengan fokus tujuan tertentu yang disebut “track”, misalnya Track “Machine Learning with Python” atau “Python Programmer”. Sebuah track akan terdiri dari beberapa course yang harus diselesaikan, dan sebuah course terdiri dari beberapa chapter. Dengan akun premium kita bisa mengambil course manapun dengan urutan manapun, “track” hanyalah fasilitas tidak wajib. Sedangkan dengan akun gratis kita hanya bisa mengakses chapter pertama setiap course.

Setiap course materi selalu disampaikan dengan dua metode: video penjelasan teori terlebih dahulu lalu dilanjut praktik dengan menggunakan interaktif window. Kita juga akan mendapatkan slide yang digunakan di video dan “catatan” saat menggunakan interaktif window.

Continue reading
tutorial fasttext bahasa indonesia

Membuat Model Word Embedding Fasttext Bahasa Indonesia

Artikel ini adalah kelanjutan dari dua artikel sebelumnya, word embedding dengan Fasttext bagian 1 dan word embedding dengan Fasttext bagian 1.5. Pada artikel sebelumnya kita berfokus menggunakan pretrained model Fasttext Bahasa Indonesia menggunakan package gensim dan package Fasttext Python. Kali ini kita akan mencoba membuat model word embedding Fasttext Bahasa Indonesia sendiri menggunakan package Fasttext python.

Apa yang dibutuhkan?

Dalam membuat model word embedding Fasttext Bahasa Indonesia, yang kita butuhkan pertama adalah dataset. Untuk menghasilkan model yang baik, diperlukan dataset yang cukup besar. Karena ukuran dataset yang bisa sangat besar, disarankan menggunakan komputer dengan RAM berkapasitas besar, atau kalau saya pribadi menggunakan Google Colab.

Continue reading